Induced airflow in flying insects I. A theoretical model of the induced flow.
نویسنده
چکیده
A strong induced flow structure envelops the body of insects and birds during flight. This flow influences many physiological processes including delivery of odor and mechanical stimuli to the sensory organs, as well as mass flow processes including heat loss and gas exchange in flying animals. With recent advances in near-field aerodynamics of insect and bird flight, it is now possible to determine how wing kinematics affects induced flow over their body. In this paper, I develop a theoretical model based in rotor theory to estimate the mean induced flow over the body of flapping insects. This model is able to capture some key characteristics of mean induced flow over the body of a flying insect. Specifically, it predicts that induced flow is directly proportional to wing beat frequency and stroke amplitude and is also affected by a wing shape dependent parameter. The derivation of induced flow includes the determination of spanwise variation of circulation on flapping wings. These predictions are tested against the available data on the spanwise distribution of aerodynamic circulation along finite Drosophila melanogaster wings and mean flows over the body of Manduca sexta. To explicitly account for tip losses in finite wings, a formula previously proposed by Prandtl for a finite blade propeller system is tentatively included. Thus, the model described in this paper allows us to estimate how far-field flows are influenced by near-field events in flapping flight.
منابع مشابه
Induced airflow in flying insects II. Measurement of induced flow.
The flapping wings of insects and birds induce a strong flow over their body during flight. Although this flow influences the sensory biology and physiology of a flying animal, there are very little data on the characteristics of this self-generated flow field or its biological consequences. A model proposed in the companion paper estimated the induced flow over flying insects. In this study, w...
متن کاملInduced airflow in flying insects I . A theoretical model of the induced flow Sanjay
Introduction Flapping birds and insects are often likened to revolving propeller blades or rotors because their wings generate lift by steadily pushing air downward. Two influential aerodynamic models of flight in insects (Ellington, 1984c) and birds (Rayner, 1979) drew much inspiration from the extensive theoretical work on rotor aerodynamics. These models focused primarily on the far-field wa...
متن کاملInduced airflow in flying insects II . Measurement of induced flow Sanjay
Introduction Like rotating propeller blades, flapping wings of an insect draw air from above the wing and generate flight forces by imparting momentum to this air. Thus, a natural consequence of any flapping activity is an induced airflow along the body of the insect. This flow envelops the flying insect and influences many flight-related physiological and sensory processes. and various mass ex...
متن کاملActive and passive antennal movements during visually guided steering in flying Drosophila.
Insects use feedback from a variety of sensory modalities, including mechanoreceptors on their antennae, to stabilize the direction and speed of flight. Like all arthropod appendages, antennae not only supply sensory information but may also be actively positioned by control muscles. However, how flying insects move their antennae during active turns and how such movements might influence steer...
متن کاملAirflow elicits a spider's jump towards airborne prey. I. Airflow around a flying blowfly.
The hunting spider Cupiennius salei uses airflow generated by flying insects for the guidance of its prey-capture jump. We investigated the velocity field of the airflow generated by a freely flying blowfly close to the flow sensors on the spider's legs. It shows three characteristic phases (I-III). (I) When approaching, the blowfly induces an airflow signal near the spider with only little flu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 209 Pt 1 شماره
صفحات -
تاریخ انتشار 2006